

Page 1

Mobility Data Methodology and Analysis

Overview

In July of 2018, the City launched a motorized foot scooter pilot program that ran through November 30, with 400 e-

scooters available for shared use throughout Minneapolis. The City required participating providers to sign a license

agreement which established standard data sharing and privacy requirements. The intention in requiring and using this

data is outlined in the following goals:

• Maintain individuals’ privacy by collecting data responsibly and thoughtfully, and anonymizing and aggregating

data

• Provide transparency by publishing aggregated and anonymized data and visualizations to the City’s Open Data

portal for public interaction

• Determine compliance with applicable regulations as stated in license agreement

• Analyze and report on aggregated trip information; e.g. number of rides, total miles/minutes ridden, average

miles/minutes per ride, breakdown by day/week/month/total pilot duration, available motorized foot scooters

by day/week/month

• Analyze and report on usage through aggregated origin, destination, and route heat maps

• Inform future policy decisions such as fleet size, distribution requirements, and/or infrastructure planning by

looking for trends and patterns from the pilot

Informing our work through data allows us to take an informed and proactive approach to shared mobility, and ensures

that we are able to shape those services to fit our desired outcomes in providing safe, equitable, and sustainable mobility

options that work for all Minneapolitans.

Looking to the future, Minneapolis hopes to build a suite of dashboards spanning all shared modes operating in the City.

This will allow for efficient oversight of existing pilots and programs, better management and pricing of curbside use, as

well as better planning for future modes. We also aim to be involved in defining the applicable national data standards

and specifications expected from providers to ensure we have enough data to define the vision and successful metrics for

shared mobility within the City, but are requiring it in a way that protects individual privacy.

Data Privacy/Sharing in License Agreements

Minneapolis has taken steps to establish clear expectations and regulations for data privacy in license agreements that

are required to operate shared mobility systems in City right-of-way. This includes transparency from providers regarding

their terms of use, privacy, and data sharing policies, and ensuring users’ ability to opt-in to these policies as well as any

potential third-party data sharing or access to location-based data. We also include provisions which ensure that

personally identifiable information (PII) is not collected by or shared with the City, and that data security practices

safeguard any PII collected by providers.

Regarding data sharing, we have ensured that expectations and regulations are clearly established in the license

agreement, and that the City is being transparent about its intentions for use of data. The license agreements state what

data the City requires from providers, how data is intended to be collected (via MDS or similar API), and a statement of

purpose for how data is intended to be used. Also included is language which establishes what data may become publicly

available, as well as a requirement of providers to make a publicly accessible API available.

Page 2

Methodology, Assumptions, and Limitations

At the time the pilot began, a data specification called the General Bikeshare Feed Specification (GBFS) API1 existed for

sharing bikeshare information and providers used this initially for the City’s data requirements for compliance. Midway

through the pilot, our providers proposed giving the City access to an API endpoint based on the Mobility Data

Specification (MDS) API2 to share additional data with us as required by the license agreement. We leveraged both the

GBFS API and the Provider API3 specification to create a method for pulling data in from multiple vendors using our

existing enterprise methods and tenets for data collection, storage, usage, and analysis.

We used the specifications for data provided through the MDS API, which defines both provider and agency endpoints for

trips. For our analysis, we used the Provider endpoint and did not make use of the Agency endpoint. MDS also specified

the existing GBFS API endpoints should be implemented for real-time availability information, so we consumed data from

the GBFS free_bike_status.json4 endpoint. Appendices A and B list an excerpt of fields provided by both MDS and GBFS,

along with if and how the City is using these fields.

Although MDS specifies that no PII is to be sent to any agency, GPS data can be identifiable even when there is no PII

provided. As a result, before consuming any trip data, we looked the stated goals of the pilot program and at previous

efforts in Minneapolis to anonymize data, researched best practices and methods other agencies had employed both in

and out of the state, and consulted with our City Clerk’s Office to determine how to consume and store data to meet our

goals and provide transparency. The Minnesota Data Practices Act informed our approach to protecting individuals’

privacy while enabling us to gain the data needed to support the City’s goals and provide transparency. Our intention was

to store as little data as possible to be able to meet the goals above, so we analyzed the fields available in both the MDS

and GBFS APIs and determined those that would be relevant.

Our immediate need was for compliance and monitoring of motorized foot scooters within the City, so we began by

consuming data from the GBFS feed to create a solution for showing availability of motorized foot scooters in the City on

a 15 minute polling basis. We later pulled historical MDS trip data to enable aggregate route reporting. We anonymized all

data as it was consumed so that no raw data was stored.

Platform

We used a Python frontend and Microsoft SQL Server backend for consuming and storing data. We secured the servers so

that only authorized users had access to the data and could not make use of it where there was no business need. We

also restricted who had access to the API tokens used for each API. We used several spatial and analytical libraries in

Python while consuming data to process and anonymize data in memory so that only processed data was stored. For

analysis and visualization, we used R, Python, and Tableau.

We employed methods throughout the lifecycle of this project to ensure it was architected so it can be re-used for both

future permitted motorized foot scooters and future expansions of the shared mobility program at the City. The image

following shows the general principles we followed, which correlate to our data strategy for enabling consistent, reliable,

trustworthy data in the City.

1 See https://github.com/NABSA/gbfs/blob/master/gbfs.md
2 Developed by LADOT. See https://github.com/CityOfLosAngeles/mobility-data-specification
3 See https://github.com/CityOfLosAngeles/mobility-data-specification/tree/0.2.x/provider
4 See https://github.com/NABSA/gbfs/blob/master/gbfs.md#free_bike_statusjson for specifications.

https://github.com/NABSA/gbfs/blob/master/gbfs.md
https://github.com/CityOfLosAngeles/mobility-data-specification
https://github.com/CityOfLosAngeles/mobility-data-specification/tree/0.2.x/provider
https://github.com/NABSA/gbfs/blob/master/gbfs.md#free_bike_statusjson

Page 3

Privacy and Processing Methods

We employed the following methodology to anonymize data:

• All API data was processed in memory using Python, meaning no raw data was stored. Once processed, the

anonymized data was stored in a secure database that only authorized users had access to.

• The trip IDs sent from MDS, while already hashed into a unique value intended for anonymization, were

discarded. We generated a new unique City trip ID to make the trip harder to link back to the original source

data, and stored that value instead.

• If a trip’s route had no points or boundaries (e.g. the ride never went anywhere), it was discarded.

• Trip starting, ending, and route polling times were rounded to the nearest half hour at the quarter hours; e.g. if a

trip started at 12:04pm, ended at 12:23pm, and a poll time was taken at 12:13pm, those times would be rounded

to 12:00pm, 12:30pm, and 12:00pm respectively.

• Using the City’s spatial assets for street segments, actual trip start and end points were discarded. Instead, they

were binned to the closest of three points on the nearest street centerline: the street segment’s start, middle,

and end point (Figure 1):

Starting data:
------X---

Street segment centerline points:
--
X X X
--

Stored anonymized point:
--
X

 Figure 1: Centerline Anonymization Binning Methodology

This centerline anonymization follows existing methods used around the City to anonymize to the closest street

segment’s centroid. Because which end of the street the point was on was important for analysis, we binned

Page 4

data to one of the three centerline points above rather than only to the centroid as has been done in other

applications.

We also performed spatial comparisons on all route points to find the closest street segment centerline or off-

street bike path.

• Any points not located in the Minneapolis bounding box were removed.

• Trip points were pruned to a single point for the trip per street segment center point or bike path and time bin,

for both storage and privacy considerations.

Assumptions and Limitations

While MDS and GBFS specified implementation and required fields, the permitted mobility providers interpreted the

requirements differently in some cases. For example, pagination was implemented differently between providers, which

meant we needed to write our code differently to accommodate. Another example was availability data; GBFS is defined

as a real-time specification, so it was implemented in real-time only and did not provide historic querying. This meant we

were unable to find historic availability numbers before we began polling. We did not poll route data in real time as it was

used only for historic analysis and future planning.

Providers also varied in what they defined as the City’s bounds, which meant we needed to remove trips that were

outside of Minneapolis. Route data provided also appeared to be suspect in that the distances and durations given in

some instances were well outside of expected values (e.g. some trips had a duration of over 7 hours, negative distance, or

a distance of over 1 million miles). We removed these examples for our analysis. Route data appeared to have

inconsistent distributions of route points to distance and duration over time and strange clustering around the 6-7 hour

duration range. In addition, providers were not consistent in providing every point per route and when truncating used

very different methods, even though the API specified all route points should be sent. We therefore ran into challenges

with normalizing and pruning the data.

Because the MDS and GBFS APIs are quickly developing standards, this caused some challenges as we consumed data

from the APIs. When providers implemented new functionality, it sometimes broke a portion of our code. Fortunately,

this limitation is also a strength of MDS, as it means that as new bugs or features are implemented, providers are quick to

deploy code changes. This means that future scooter or mobility programs using the APIs will provide more functionality,

and will solve some of the challenges we encountered during our analysis.

Planned Changes to the Methodology

In mid-March 2019, another pilot program was approved through March of 2020 for motorized foot scooters. It is the

City’s intention to continue to collect only anonymized data required to support the goals listed above, and to continue to

refine our methodology based on best practices. This could include using other open source tools as they are developed

and validated. Moving forward, we plan to collect all data retroactively on a monthly basis, except for availability

information, which is required for compliance and monitoring.

Page 5

Appendix A: MDS Provider Trip & Route Specification

MDS defines that trip information must be sent as part of the API. The definition of a trip is as follows5. The table below has been annotated to include data being used by

Minneapolis, and any processing being done on the field to ensure privacy. Fields not used are denoted in the Used by Minneapolis column.

Trips

A trip represents a journey taken by a mobility as a service customer with a geo-tagged start and stop point. The trip object has the following structure.

Field Type Required
/Optional

Comments Used by
Minneapolis

Processing Completed Before Storing

provider_id UUID Required A UUID for the Provider, unique
within MDS

No

provider_name String Required The public-facing name of the
Provider

Yes

device_id UUID Required A unique device ID in UUID format Yes
vehicle_id String Required The Vehicle Identification Number

visible on the vehicle itself
No

vehicle_type Enum Required See vehicle types table Yes
propulsion_type Enum[] Required Array of propulsion types; allows

multiple values
No

trip_id UUID Required A unique ID for each trip Yes Original trip id is discarded and a unique one is
created.

trip_duration Integer Required Time, in Seconds Yes
trip_distance Integer Required Trip Distance, in Meters Yes We store this distance, and recalculate it after

removing points not in Minneapolis, pruning trip
points, and assigning to a centerline bin. This is due
to data quality issues in the API.

route GeoJSON
FeatureCollection

Required See Routes detail below Yes Multiple steps:
1. If the route went nowhere, discard it.
2. Find the closest street centerline or bike path to

the point.
3. Anonymize the points of the trip to the closest

centerline bin.
4. Prune route points to a single point per

centerline or bike path bin.
5. Anonymize the route timestamp by rounding to

the nearest half hour at the quarter hour.
6. Remove points not in Minneapolis.

5 See https://github.com/CityOfLosAngeles/mobility-data-specification/tree/0.2.x/provider#trips for full specification details.

https://github.com/CityOfLosAngeles/mobility-data-specification/tree/0.2.x/provider#trips

Page 6

7.
accuracy Integer Required The approximate level of accuracy, in

meters, of Points within route
No

start_time timestamp Required

Yes Start time is rounded to the nearest half hour at the
quarter hour.

end_time timestamp Required

Yes End time is rounded to the nearest half hour at the
quarter hour.

parking_verification_url String Optional A URL to a photo (or other evidence)
of proper vehicle parking

No

standard_cost Integer Optional The cost, in cents, that it would cost
to perform that trip in the standard
operation of the System

No

actual_cost Integer Optional The actual cost, in cents, paid by the
customer of the mobility as a
service provider

No

Routes

To represent a route, MDS provider APIs must create a GeoJSON FeatureCollection, which includes

every observed point in the route. Routes must include at least 2 points: the start point and end point.

Additionally, routes must include all possible GPS samples collected by a provider.

A sample route object is displayed in Figure 2 to the right.

"route": {
 "type": "FeatureCollection",
 "features": [{
 "type": "Feature",
 "properties": {
 "timestamp": 1529968782.421409
 },
 "geometry": {
 "type": "Point",
 "coordinates": [
 -118.46710503101347,
 33.9909333514159
]
 }
 },
 {
 "type": "Feature",
 "properties": {
 "timestamp": 1531007628.3774529
 },
 "geometry": {
 "type": "Point",
 "coordinates": [
 -118.464851975441,
 33.990366257735
]
 }
 }]
}

Figure 2: Sample Route Object

Page 7

Appendix B: GBFS Free Bike Status Specification

The definition of the GBFS endpoint for free bike status is as follows6. Fields not used are denoted in the Used by Minneapolis

column.

free_bike_status.json

Describes bikes that are not at a station and are not currently in the middle of an active ride.

Field Name Defines Used by Minneapolis

bikes Array that contains one object
per bike that is currently
docked/stopped outside of
the system as defined below

Yes

- bike_id Unique identifier of a bike Yes
- lat Latitude of the bike. The field

value must be a valid WGS 84
latitude in decimal degrees
format.

Yes

- lon Longitude of the bike. The
field value must be a valid
WGS 84 latitude in decimal
degrees format.

Yes

- is_reserved 1/0 value - is the bike
currently reserved for
someone else

No

- is_disabled 1/0 value - is the bike
currently disabled (broken)

No

6 See https://github.com/NABSA/gbfs/blob/master/gbfs.md#free_bike_statusjson for full specification details.

https://github.com/NABSA/gbfs/blob/master/gbfs.md#free_bike_statusjson

